Equivalence between Pólya–Szegő and relative capacity inequalities under rearrangement

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relative rearrangement and interpolation inequalities

We prove here that the Poincaré-Sobolev pointwise inequalities for the relative rearrangement can be considered as the root of a great number of inequalities in various sets not necessarily vector spaces. In particular, new interpolation inequalities can be derived. Reordenamiento relativo y desigualdades de interpolación Resumen. Mostramos que las desigualdades puntuales de Poincaré-Sobolev pa...

متن کامل

Some Matrix Rearrangement Inequalities

We investigate a rearrangement inequality for pairs of n × n matrices: Let ‖A‖p denote (Tr(A∗A)p/2)1/p, the C trace norm of an n×n matrix A. Consider the quantity ‖A+B‖p+‖A−B‖p. Under certain positivity conditions, we show that this is nonincreasing for a natural “rearrangement” of the matrices A and B when 1 ≤ p ≤ 2. We conjecture that this is true in general, without any restrictions on A and...

متن کامل

Equivalence between Bell inequalities and quantum Minority game

We show that, for a continuous set of entangled four-partite states, the task of maximizing the payoff in the symmetric-strategy four-player quantum Minority game is equivalent to maximizing the violation of a four-particle Bell inequality with each observer choosing the same set of two dichotomic observables. We conclude the existence of direct correspondences between (i) the payoff rule and B...

متن کامل

Equivalence between Bell inequalities and quantum minority games

Article history: Received 25 September 2008 Received in revised form 2 December 2008 Accepted 3 December 2008 Available online 7 December 2008 Communicated by P.R. Holland PACS: 03.67.-a 02.50.Le

متن کامل

Equivalence of Sobolev Inequalities and Lieb–thirring Inequalities *

The Sobolev and Lieb–Thirring (LT) inequalities seem to be very different. The former is a kind of uncertainty principle, which, effectively, states how large a negative potential −V must be for the Schrödinger operator H = −∆ − V to have a bound state. The latter, which was originally introduced to prove the stability of matter [22], estimates the sum of all the negative eigenvalues of H and, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archiv der Mathematik

سال: 2014

ISSN: 0003-889X,1420-8938

DOI: 10.1007/s00013-014-0695-4